Renal blood flow and dynamic autoregulation in conscious mice.
نویسندگان
چکیده
Autoregulation of renal blood flow (RBF) occurs via myogenic and tubuloglomerular feedback (TGF) mechanisms that are engaged by pressure changes within preglomerular arteries and by tubular flow and content, respectively. Our understanding of autoregulatory function in the kidney largely stems from experiments in anesthetized animals where renal perfusion pressure is precisely controlled. However, normally occurring variations in blood pressure are sufficient to engage both myogenic and TGF mechanisms, making the assessment of autoregulatory function in conscious animals of significant value. To our knowledge, no studies have evaluated the dynamics of RBF in conscious mice. Therefore, we used spectral analysis of blood pressure and RBF and identified dynamic operational characteristics of the myogenic and TGF mechanisms in conscious, freely moving mice instrumented with ultrasound flow probes and arterial catheters. The myogenic response generates a distinct resonance peak in transfer gain at 0.31 +/- 0.01 Hz. Myogenic-dependent attenuation of RBF oscillations, indicative of active autoregulation, is apparent as a trough in gain below 0.3 Hz (-6.5 +/- 1.3 dB) and a strong positive phase peak (93 +/- 9 deg), which are abolished by amlodipine infusion. Operation of TGF produces a local maximum in gain at 0.05 +/- 0.01 Hz and a positive phase peak (62.3 +/- 12.3 deg), both of which are eliminated by infusion of furosemide. Administration of amlodipine eliminated both myogenic and TGF signature peaks, whereas furosemide shifted the myogenic phase peak to a slower operational frequency. These data indicate that myogenic and TGF dynamics may be used to investigate the effectiveness of renal autoregulatory mechanisms in conscious mice.
منابع مشابه
Spontaneous renal blood flow autoregulation curves in conscious sinoaortic baroreceptor-denervated rats.
These experiments examined whether the conscious sinoaortic baroreceptor-denervated (SAD) rat, owing to its high spontaneous arterial pressure (AP) variability, might represent a model for renal blood flow (RBF) autoregulation studies. In eight SAD and six baroreceptor-intact rats, AP and RBF were recorded (1-h periods) before and after furosemide (10 mg/kg followed by 10 mg. kg(-1). h(-1) iv) ...
متن کاملA novel mechanism of renal blood flow autoregulation and the autoregulatory role of A1 adenosine receptors in mice.
Autoregulation of renal blood flow (RBF) is mediated by a fast myogenic response (MR; approximately 5 s), a slower tubuloglomerular feedback (TGF; approximately 25 s), and potentially additional mechanisms. A1 adenosine receptors (A1AR) mediate TGF in superficial nephrons and contribute to overall autoregulation, but the impact on the other autoregulatory mechanisms is unknown. We studied dynam...
متن کاملTonic and phasic influences of nitric oxide on renal blood flow autoregulation in conscious dogs.
The aim of this study was to investigate the influence of the mean level and phasic modulation of NO on the dynamic autoregulation of renal blood flow (RBF). Transfer functions were calculated from spontaneous fluctuations of RBF and arterial pressure (AP) in conscious resting dogs for 2 h under control conditions, after NO synthase (NOS) inhibition [ N G-nitro-l-arginine methyl ester hydrochlo...
متن کاملEffect of renal denervation on dynamic autoregulation of renal blood flow.
Vasoconstrictor intensities of renal sympathetic nerve stimulation elevate the renal arterial pressure threshold for steady-state stepwise autoregulation of renal blood flow. This study examined the tonic effect of basal renal sympathetic nerve activity on dynamic autoregulation of renal blood flow in rats with normal (Sprague-Dawley and Wistar-Kyoto) and increased levels of renal sympathetic n...
متن کاملAutoregulation of Blood Flow: Vessel Diameter Changes in Response to Different Temperatures
Background: Autoregulation of blood flow is a marvelous phenomenon balanc- ing blood supply and tissue demand. Although many chemically-based explanations for this phenomenon have been proposed and some of them are commonly used today, biomechanical aspects of this phenomenon was neglected. The biomechanical aspect provides insights to us to model vessel diameter changes more precisely and comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 295 3 شماره
صفحات -
تاریخ انتشار 2008